
Enabling Computational Nanoteehnology through JavaGenes in a Cycle Scavenging
Environment

A1 Globus, a Madhu Menon, b and Deepak Srivastava a

(a) NASA Ames Research Center, CSC/NAS, Moffett Field, CA 94035

(b) Center for Computational Sciences and Department of Physics, University of

Kentucky, Lexington, KY 40506-0045

Abstract: A genetic algorithm procedure is developed and implemented for fitting

parameters for many-body inter-atomic force field functions for simulating

nanotechnology atomistic applications using portable Java on cycle-scavenged

heterogeneous workstations. Given a physics based analytic functional form for the force

field, correlated parameters in a multi-dimensional environment are typically chosen to fit

properties given either by experiments and/or by higher accuracy quantum mechanical

simulations. The implementation automates this tedious procedure using an evolutionary

computing algorithm operating on hundreds of cycle-scavenged computers. As a proof of

concept, we demonstrate the procedure for evaluating the Stillinger-Weber (S-W)

potential by (a) reproducing the published parameters for Si using S-W energies in the

fitness function, and (b) evolving a "new" set of parameters using semi-empirical tight-

binding energies in the fitness function. The "new" parameters are significantly better

suited for Si cluster energies and forces as compared to even the published S-W potential.

1. Introduction: Accurate molecular dynamics (MD) simulation of reactive systems

containing many atomic species is important for the conceptualization, design and testing

of novel nanoscale materials, molecular electronic devices, nano-integrated systems and

applications, and a broad range of physical and chemical phenomenon in other areas as

well. The physical and chemical characterization of carbon nanotubes and fullerenes,

design and operations of molecular gears, hinges, three-way junctions, and bearings have

also utilized MD simulations using reactive dynamics of 2- or 3-atomic species

containing systems [Globus et al, 1998, Srivastava et. al. 2001]. However, as the system

and device sizes continue to shrink and composition becomes more multi-species, there is

an urgent need for developing good quality reactive atomic force field functions that are

not currently available.

There are two parts to developing atomic force field functions. First, finding an

analytic functional form that reflects the physical and chemical nature of the atomic

species under consideration, and second, fitting parameters in a complex multi-

dimensional parameter space based on the data available from the experiments or more

accurate quantum mechanical calculations. In an ideal case, the cycle of choosing a

functional form and parameterization of the force field function should be iterated until a

reasonable convergence on the choice of inter-atomic potentials is achieved. Doing this

for multi-component systems is extremely tedious because the parameter space that needs

to be investigated is large and may be coupled in a complex way. The tedium has

deterred regular successful attempts in developing "new" force field functions and

improving upon the existing ones for a variety of nanotechnology applications.

Using a GeneticAlgorithm (GA) in the proposedschemehastwo advantages.
First, GA is gearedtowardssamplingboth the near-equilibrium(minimum energy)and
far-from-equilibrium (energeticallyexcited) configurationsin the data-set,and second,
thousandsof independentGA jobs canbe run in anembarrassinglyparallel manneron
cycle-scavengednon-homogeneousdistributed computing resources.JavaGenesis a
generalpurposeGA codewritten in Java[Globus,et al. 2000] to evolvemoleculesand
modified for this work. The executablesrun on nearly any modem computerwithout
modification.In this work,wedemonstratethepowerof JavaGenesandcycle-scavenging
by automating the developmentof new fitting parametersfor the well established
Stillinger-Weber (S-W) Si potential. Indeed, literally dozens of high quality
parameterizationsare found by thousandsof JavaGenesjobs executed by cycle
scavengingapproximately350workstationsatNASA's NAS supercomputingfacility.

GA has beenused to find atomic interaction potential parametersfor "non-
reactive" force fields for metal-organicsystems[Mohamadi,et al. 1990], tripod metal
compounds[Hunger, et al. 1998,Hunger, et al. 1996,Hungerand Huttner 1999] and
Technetium(Tc) complexes[CundariandFu 2000]. WangandKotlmanhaveoptimized
Amber force field parametersfor several organic molecules using GA [Wang and
Kollman 2001]. Sincetheseforcefieldsdonot allow reactions,theyareunsuitedto many
nanotechnologyapplications.

2. Method: In this section we briefly describe the implementation of JavaGenes for

massively parallel search of the multi-parameter space for fitting reactive many-body
atomic force field functions.

2a. JavaGenes Implementation: GAs seek to mimic natural evolution's ability to

produce highly functional objects. Natural evolution produces organisms, whereas GAs

can produce sets of parameters, programs, molecular designs, and many other structures.

Our GA, JavaGenes, employs the following algorithm (words in quotes are typical GA

terminology):

1. Represent potential parameters with a set of floating point

numbers; each set is called an "individual"

2. Generate a "population" of individuals with random

parameters

3. Calculate the "fitness" of each individual

4. Repeat

o Randomly select "parents" with a bias towards better

fitness

o Produce "children" from the parents with either a:

• "crossover" that combines parts of two parents

into a child

• or "mutation" that modifies a single parent

o Calculate the fitness of the child

o Randomly replace individuals of less fitness in the

population with the thus produced children

5. Until satisfied according to someminimal convergence
criteria

The vast majority of the CPU time is spent calculating the fitness function and each

fitness function evaluation is entirely independent of the others. This means that a single

GA run is almost embarrassingly parallel, but we do not take advantage of this because

many runs are necessary to evaluate a stochastic procedure. Rather, each of 1000s of runs

is submitted to the Condor batch queue. Since there are only 350 machines in our Condor

pool, this is perfectly adequate parallelization.

JavaGenes is a steady state tournament selection genetic algorithm. The tournament

size is usually two. In tournament selection each parent is chosen by randomly selecting

two individuals from the population and choosing the fittest to be the parent. After

crossover or mutation produces a child, individuals to replace are chosen by an anti-
tournament of size two. An anti-tournament chooses the least fit individual.

We represent force field parameters as a ragged two-dimensional array of double

precision floating point numbers. The first dimension represents the two- or three-body

terms of the potential function, and the ragged second dimension holds the varying

number of parameters depending on the number of bodies. Each parameter is assigned a

set of limits within which it is allowed to evolve. The limiting values of the parameters

are chosen from the physical interpretation of the contribution of the parameter to the

force field function and are randomized among jobs.

Evolution is guided by a fitness function. The fitness function must provide a fitness

for any possible individual, no matter how bad, and distinguish between any two

individuals, no matter how close they are. The fitness function for this work compares

energies and forces computed for a given set of atomic conformations using the evolving

parameters with externally supplied energies and forces. Conformations for both near

equilibrium and far from equilibrium configurations for very high and low energies were
used.

In general GA is not guaranteed to find a unique or even a satisfactory solution, but

often works well in practice. JavaGenes uses many "GA parameters" (mutation rate,

tournament size, etc.) that can affect performance and results of the search procedure.

Choosing GA parameters is a non-trivial problem. We solve this by randomizing the

choice of GA parameters in appropriate ranges in many parallel GA jobs. This eliminates

a tedious human-directed search for good GA-parameters. Initially, 30-100 single-

workstation GA runs with identical GA-parameters (except the random number seed) for

each job were run with populations varying between 1000-3000. The GA-parameters

that worked for one search (say, Si dimers in the fitness function) would fail in a similar

search for a different system (say, larger Si clusters). The alternate technique of using a

thousand trajectories with randomized GA-parameters and smaller populations (100-200)

worked very well for all the systems attempted.

2b. Example: Stillinger-Weber (S-W) Many-body Potential

We have chosen the S-W functional form as an example and fitted the parameters

using the GA approach in two cases: energies and forces calculated by S-W with the

original parameters, and energies and forces calculated by a semi-empirical tight-binding

code [Menon and Subbaswamy 1993]. The S-W molecular potential expresses the total

energy of a given configuration in terms of the sum of two- and three-body contributions

to the energy as a function of the atomic positions in the configuration:

E=_vz(i,j)+ Ev3(i,j,k)

(,j. i,j,k
l_ J i< j<k

where E is total interaction energy, ij,k indicate individual atoms, and v is the interaction

energy of n atoms. To reduce computation, reactive potentials often have a cutoff

function which forces each term to zero at large atomic separations. This converts the

problem from O(n 3) to O(n) since only near neighbors need be considered and the

number of near-neighbors is limited by the minimum bond length found in systems at

reasonable temperatures and pressures (outside of neutron stars, black holes, etc.).

The v terms are:

v2 (i,j) = A(Br -p - r -q)c_

C

C! =er-a'r <a,

c_ = 0;r > a

where r is the i,j inter-atomic distance and all other values are adjustable parameters; and

v3(i,j,k) = ct + _(cosO - cOSOo)2Cz

Y g
+

C2 -- e r''j-a' r'_'t-al ",ri, j < a 1 A rj,k < a z

c 2 = 0;r/,j e aa v rj,k > a

where rij and rjk are the two inter-atomic distances, theta is the angle and all other values

are adjustable parameters.

2c. CPU Cycle Scavenging System: Condor

We use the Condor [Litzkow, et al. 1988] cycle scavenger running on about 350

SGI and Sun machines at the NASA Advanced Supercomputing (NAS) Division. Each

machine runs a daemon that watches user I/O and CPU load. Multi-processor machines

run one daemon for each processor. When a CPU has been idle for 2 hours, a job from

the batch queue is assigned to the CPU and will run until the daemon detects a keystroke,

mouse motion, or high non-Condor CPU usage. At this point, the job is removed from the

workstationandplacedbackon thebatchqueue.Thejob eventuallyrunsagain,although
probably on a different machine. Typically, between 100-200 NAS machines are
available for batch processingthrough the NAS Condor pool at any particular time.
Figure 1 showsa typical month's usageon NAS condorpool. Note the usagespikes
duringtheweekday.

ro w_a _z_ _o 11 o_:ze pST _o_z to r,, ul, zz ze 13 $7 _T z_2

nso _dl'l

Tot,I

o_

Figure 1: The horizontal axis is time, the vertical axis number of

processors. Red indicates processors in normal use, blue idle, and

green indicates the processors running Condor jobs.

While cycle-scavenging systems can supply huge amounts of CPU, they are

restricted to embarrassingly parallel problems with minimal I/O requirements. Many

important problems fit within these restrictions, including parameter studies, Monte Carlo

simulations, data analysis and GA.

We discovered that, when running thousands of jobs, a few would die before

completion for various reasons. Occasionally the Java Virtual Machine (JVM) would

crash, jobs would receive kill signals from unknown causes, and so forth. Fortunately,

losing a few percent of the jobs doesn't matter since we are only interested in the best

dozen or so parameter sets. More seriously, black holes (machines that kill all jobs

assigned to them) develop occasionally. Black holes at NAS are usually caused by an

incorrect Java installation or a full disk. We added a check for a missing JVM in the TCL

script that runs each JavaGenes job. Jobs report the error and wait for the installation to

be corrected. Full disks are discovered by large numbers of dead-job emails (Condor

sends email when a job completes). In this case, the black hole is fixed or removed from

the pool and the jobs are restarted.

3. Results: First, as validation, we use the published S-W potential parameters to

calculate energies and forces of small Sin (n = 2 - 6) clusters for the fitness function, and

compare the results in the case of Si, (n =7, 8) clusters that were not used in the fitness

function. Figure 2 compares the energies of Si clusters as calculated by S-W potential

with GA evolved parameters with those computed by using the published parameters in

two cases. Figure 2 (a) is for Si_ clusters with n = 2 - 6, Figure 2 (b) is for Si. clusters

with n = 7, 8, i.e., the clusters not used in the fitting procedure. The figure shows the

comparison of the energies in the full range of the configurations. The comparison shows

a good fit in both cases.

400

3O0

200

E

100

E
O -100

200

2-6 Atom Clusters, evolved to}

7

/

÷'

40O

300

i
2ooi

100

0

-100

.20O

7-B Atom Cl_ste."s (not evolveC_to)
1

/

,.

/

/

:/

/'
#

/;

f

x�

/
!

.,/ i

Y
.300 / 300

,,,"

-400 ,: -400 : 1

.4oo -200 o _o 400 -400 .2oo o _'zoo 400

(a) energies from published paramete.m (b) energies from published parameters

Figure 2: Comparison of energies (in kcal/mol) calculated for Si2-

8 clusters using the evolved (with S-W fitness function) and

published parameters. Each cross represents a cluster. Crosses on

the diagon_ line are a perfect fit between the evolved and

published values: (a) for Si2-6 used in the fitness function., and (b)

for Siv,s not used in the fitness function.

Second, as a test of the approach, we find "new" GA evolved S-W potential

parameters where the fitness function was described by energies and forces of small Si

clusters computed from a non-orthogonal quantum tight-binding scheme (labeled semi-

empirical in the figures). The results are shown in Figure 3 (a) and (c). The match is very

good for 2-6 atom Si clusters, as might be expected, because the energies and forces for

these clusters were used in constructing the fitness function. The comparison of the

energies of 7, 8 and 33 atom Si clusters, which were not used in the fitting procedure,

also show good results suggesting that the approach is transferable. Figure 3 (b) and (d)

shows the comparison of energies calculated with evolved (with tight-binding fitness

function) parameters with those calculated from the published parameters. Figure 4

shows similar results for Si33 clusters. In both cases the evolved parameters have a much

better fit to the tight-binding energies. This means that using GA we have significantly

improved upon the original parameterization of S-W by a "new" set that describes Si

cluster energetics rather well.

4OO

200

200

-400

400

200

m 0

,200

.400

,600

(a) 2-6 Atom Cluslers (evolved to)

/r
/"

_600 -400 -200 0 200 400

{c} 7-8 Atom Clustars (no; evolve_ to)

/....

-ooo -4o0 .2oo o 2oo 4oo
semi-empiri,cal

4O0

200

-200

_g
_. -6120

400

_) 20D

-200

.4DO

-600

(b) 2-6 Atom CEusters

/:

..:':

- , -

//

/'

...:

-600 -400 20O 0 200 400

(d) 7-8 Atom Clusters

j.•

....•

'!i-i, .-"/

x

6oo 4o0 -200 0 2oo 4oo
semi-empirical

Figure 3: Comparison of energies (kcal/mol) calculated for clusters

using the evolved (a,c) and published S-W parameters (b,d).

Figures (a) and (b) are for Si2.6 (used in the fitness function), and

(c) and (d) are for Si7,8 (not used in the fitness function).

(a) (b)

°I
-500

-2000

.3000_/"

/

"/-.

f. ,

/?1

i,/

.=

GO

0 .,'/"'///':/tt

-500

-1000

-I500 : :

.2000

/'

/

2_oI ":'t:

/

/

f,,'

.3000 /'

//

.,/
/

_r

/
' 7 ._

.. /

/.

i,:
/

/
/:

/

.3000 .2000 .1000 0 ,3003 .2000 -1000 0

semi-empmcal semi-eml_rical

Figure 4: Same as Figure 3, but for Si33 clusters that were not used

in the fitness function. (a) compares with the evolved parameters,

(b) with the original published parameters.

4. Computational Issues: Figure 5 shows job length distribution for 96 jobs typical of

the jobs in this study. The time variation reflects execution on different machines and

different checkpoint histories. In particular, the handful of jobs with very long times

reflect slow machines in the Condor pool that are almost never used. Such machines may

run a single job for days without being killed because no one ever logged in. JavaGenes

checkpoints jobs (using Java serialization) every hour. If a job is killed between

checkpoints, then the results since the last checkpoint are lost and evolution will restart

from the checkpoint with a different random number seed.

6O

50

10

Figure 5: The horizontal axis is individual jobs sorted by total
execution time. The vertical axis is time in hours. The execution

time includes the time between a checkpoint and removal from a

machine, i.e., time that does not contribute to the final result. Mean

= 8.3 hours, median = 6.3 hours, min = 0.9 hours, and max = 55.3
hours.

5. Impact: Given a functional form, for molecular force field functions, we have shown

that genetic algorithms (GA) show promise for automating the task of fitting parameters

over a complex range of configurations using large amounts of otherwise unused

compute cycles in a distributed non-homogeneous computing environment. However,

very substantial CPU resources are needed in part because we randomize the GA

parameters and therefore need hundreds to thousands of GA jobs to get good results. This

is not a problem, because the jobs are embarrassingly parallel with low IO requirements

and are suited for cycle-scavenging computation. This work suggests that these otherwise

wasted resources can be used to enable next generation simulation tools for complex

many-atomic species systems in nanotechnology designs and applications of the future.

6. Acknowledgments: We thank NASA's NAS supercomputing facility for funding and

computational support through the CICT program ITSR project. Part of this work (AG

and DS) is supported by NASA contract 704-40-32 to CSC.

7. References

[Cundari and Fu 2000] T. R. Cundari, W. T. Fu, "Genetic Algorithm Optimization of a

Molecular Mechanics Force Field for Technetium," Inorganica Chimica Acta, 300302,

pages 113-124, 2000.

[Globus et al. 1998] "Machine Phase Fullerene Nanotechnology," AI Globus, Charles

Bauschlicher, Jie Han, Richard Jaffe, Creon Levit, Deepak Srivastava, Nanotechnology,

9, number 2, September 1998, pages 192-199.

[Globus et al. 2000] "JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms," A1

Globus, Eric Langhirt, Miron Livny, Ravishankar Ramamurthy, Marvin Solomon, and

Steve Traugott, Java Grande 2000, sponsored by ACM SIGPLAN, San Francisco,

California, 3-4 June 2000.

[Hunger, et al. 1996] J. Hunger, S. Beyreuther and G. Huttner, "Modeling of Tripod

Metal Compounds RCH2C(CH2PR'R")3MLn: Optimization of Force Field Parameters

by Genetic Algorithms," Journal of Molecular Modeling 2, 257, 1996.

[Hunger, et al. 1998] J. Hunger, S. Beyreuther, G. Huttner, K. Allinger, U. Radelof and

L. Zsolnai, "How to Derive Force Field Parameters by Genetic Algorithms: Modeling

lripod-Mo(CO)3 Compounds as an Example," European Journal of Inorganic

Chemistry, pages 693-702, 1998.

[Hunger and Huttner 1999] J. Hunger and G. Huttner, "Optimization and Analysis of

Force Field Parameters by a Combination of Genetic Algorithms and Neural Networks,"

Journal of Computational Chemistry, volume 20, pages 455-471, 1999.

[Litzkow, et al. 1988] M. Litzkow, M. Livny, and M. W. Mutka, "Condor - a Hunter of

Idle Workstations," Proceedings of the 8th International Conference of Distributed

Computing Systems, pages 104-111, June 1988. See http://www.cs.wisc.edu/condor.

[Menon and Subbaswamy 1993] Madhu Menon and K. R. Subbaswamy, "Nonorthogonal

Tight-Binding Molecular-Dynamics Study of Silicon Clusters," Physical Review B,

Volume 47, Number 19, pages 754-759, 15 May 1993.

[Mohamadi, et al. 1990] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M.

Lipton, C. Caufield, G. Chang, T. Handrickson, W. C. Still, Journal of Computational

Chemistry, volume 1 l, pages 440-467, 1990.

[Stillinger and Weber 1990] Frank H. Stillinger and Thomas A. Weber, "Dynamical

Branching During Fluorination of the Dimerized Si(100) Surface: A Molecular Dynamic

Study, Journal of Chemical Physics, 92(10), pages 6239-6245, 15 May 1990.

[Srivastavaetal. 2001] D. Srivastava,M. MenonandK. Cho,"Computational
Nanotechnologywith CarbonNanotubesandFullerenes,"AIP & IEEEpublished,
Computing in Engineering and Sciences, page 42, July-August 2001.

[Wang and Kollman 2001] "Automatic Parameterization of Force Field by Systematic

Search and Genetic Algorithms," Junmei Wang and Peter A. Kollman,

Journal of Computational Chemistry, volume 22, issue 12, pages 1219-1228.

